Name	Index No:
Signature	
545/3	
CHEMISTRY	
Practical	
Paper 3	
2 hours	

RESOURCEFULMOCKS 2019

Uganda Certificate of Education CHEMISTRY

(PRACTICAL TEST)

Paper 3

2hours

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Record your answers on this question paper in the spaces provided **ONLY**Mathematical tables, slide rules and silent non-programmable calculators may be used.

Reference books (i.e. text books. books on qualitative analysis, etc) should not be used

All working must be clearly shown.

For Examiners use only			
Q.1			
Q.2			
Total			

1.	You are provided with the following;			
	BA1, which is a solution containing a carbonate Y _n CO ₃ .			
	BA2, which is a 0.2M hydrochloric acid solution.			
	You are required to determine the value of n in Y _n CO ₃ .			
	Procedure:			
	Pipette 20 or 25 cm ³ of BA1 into a clean conical flask. Then add 2-3 drops of phenolphthalein indicator and titrate the solution with solution BA2 from the burette untit the end point. Repeat the titration 2-3 times to obtain consistent results. Enter your result in the table below.			he burette until
	Results:			
	Volume of pipette used=		•••••	cm ³
	Titration number	1	2	3
	Final burette reading(cm ³)			
	Initial burette reading(cm ³)			
	Volume of BA2 used(cm ³)			
	Titre values used to calculate the average volume of BA2 used Average volume of BA2 used			
	Questions: (a)Calculate the number of moles of;			
	(i) BA2 that reacted.			

(ii) $\mathbf{Y_nCO_3}$ in 1000 cm ³ of solution $\mathbf{BA1}$
(1 mole of Y _n CO ₃ reacts with 2 moles of hydrochloric acid)
(b) Determine the
(i) Molar mass of Y _n CO ₃ .
(ii) Value of n in Y_nCO_3 (Y=38,C=12,0=16)

2. You are provided with substance **Q** which contains **two** cations and **one** anion. Carry out the following test on **Q** to identify the cations and anion. Where any gas is evolved, it must be identified and tested. Record your observations and deductions in the table below.

TESTS	OBSERVATIONS	DEDUCTIONS
(a).Heat one spatula endful of Q strongly until there is no further change.		
(b).Dissolve two spatula endfuls of Q in about 3cm ³ of water. To the mixture add ammonia solution drop wise until in excess. Filter and keep both the filtrate and residue.		
(c) To the filtrate, add dilute nitric acid drop wise until the solution is just acidic. Divide the solution into five portions		
(i)To the first portion of the acidified filtrate, add 2-3 drops of lead (ii) nitrate solution		
(ii)To the second portion of the acidified filtrate, add 2-3 drops of silver nitrate solution		

(iii)To the third portion of the acidified filtrate, add 2-3 drops of barium nitrate solution		
TESTS	OBSERVATIONS	DEDUCTIONS
(iv).To the fourth portion of the acidified filtrate, add sodium hydroxide solution drop wise until in excess.		
iv).To the fifth portion of the acidified filtrate, add ammonia solution drop wise until in excess		
(d) Wash the residue with water and dissolve it in dilute sulphuric acid. Divide the resultant solution into three portions.		
(i).To the first portion of the solution, add sodium hydroxide solution drop wise until in excess		
(ii) To the second portion of the solution, add ammonia solution dropwise until in excess.		
iii)To the third portion of the solution, add 2-3 drops of potassium iodide solution		
(e). (i) Cations in O:	and	1

e). (i) Cations in Q:	 and	
(ii) Anion in Q :	 	